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We study the efficiency of a neural-net filter and deconvolution method for estimating jet energies
and spectra in high-background reactions such as nuclear collisions at the relativistic heavy-ion
collider and the large hadron collider. The optimal network is shown to be surprisingly close but
not identical to a linear high-pass filter. A suitably constrained deconvolution method is shown to
uncover accurately the underlying jet distribution in spite of the broad network response. Finally, we
show that possible changes of the jet spectrum in nuclear collisions can be analyzed quantitatively,
in terms of an effective energy loss, with the proposed method.

PACS number(s): 87.22.Jb, 42.79.Ta

I. INTRODUCTION

Jet analysis has been proposed as one of the tools to
probe dense matter produced in high-energy AA reac-
tions because of their sensitivity to the energy-loss mech-
anisms and infrared correlation scales [1,2]. However,
identifying jets and estimating their total energy in AA
reactions poses a practical challenge because of the large
background of low-transverse-energy hadrons produced
along with the rare jets. Conventional methods of jet
analysis developed for pp collisions [3, 4] begin to fail
in pA collisions [5] due to the enhanced nuclear back-
ground and can be expected to fail completely for future
applications to nuclear collisions at the relativistic heavy-
ion collider (RHIC) and the large hadron collider (LHC)
[6]. The question addressed in this paper is whether the
powerful pattern-recognition techniques recently devel-
oped in the field of artificial neural networks [8] could
help overcome this problem. We show below that neuro-
computing techniques do in fact look promising for the
present application.

In particular, we study the efficiency of feed-forward
networks (FFN) for application to jet analysis. We show
that a high-pass linear neural filter can be trained (us-
ing Monte Carlo event generators [2] or ideally pp data)
to provide a nearly-bias-free estimator of the jet energy
distribution even in the presence of a very high level of
low transverse momentum “noise.” In addition, we show
that knowledge of the neural response function allows us
to deconvolute the filtered jet distribution and recover
the underlying “primordial” jet distribution to a surpris-
ing high degree of accuracy. In addition, in the case of
most physical interest, where the jet-fragmentation func-
tion becomes significantly modified by the dense nuclear
medium, the method proposed leads to a quantitative
estimate of the average energy loss.

To put this problem into perspective, we recall
that perturbative quantum chromodynamics (PQCD)
predicts that in collisions of high-energy hadrons
or nuclei, occasional high-momentum-transfer parton-
scattering processes lead to a calculable primordial distri-
bution I(E,no, o) of quarks and gluons with transverse
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energy E 2 2 GeV, pseudorapidity 7o = — In[tan(6p/2)],
and azimuthal angle ¢o. Those partons fragment into a
jet of secondary hadrons with highly correlated momenta
which we denote by (e, 74, $a). Here e, is the transverse
energy, 7, the pseudorapidity, and ¢, the azimuthal an-
gle of hadron a fragmenting from the jet parton. The
problem of jet analysis is to identify only those hadrons
out of the total multiplicity which are fragments from the
jet and reject hadrons from background processes due to
a variety of other dynamical mechanisms (pedestal effect,
beam jets, multiple minijets). The objective then is to
reconstruct the kinematics of the primary jets and the
primordial distribution I(E,nq, ¢q).

Conventional methods for jet identification utilize the
fact that most jet fragments are collimated into an an-
gular cone [3]

(o — #0)% + (Ma —Mm0)> < RZ= 0.5 . (1)

Therefore, the jet energy, as determined, for example, by
a segmented calorimeter, is approximately given by

Ep = Z €q = Zea e(Rz—(¢a—¢0)2"—(nG_n0)2) s

a€R
)

where © (z) is the Heaviside step function. However, this
is a biased estimator of the initial parton energy E be-
cause the background processes contribute to the yield of
hadrons with e, S E. ~ 2 GeV/c in the jet cone. Also,
the jet hadronization mechanism can produce hadrons
outside the angular cone R. Therefore, the measured
output distribution O(Eg) can be expected to differ sig-
nificantly from the primordial input distribution I(E).
This distortion of the primordial spectrum of course be-
comes more severe as the low-frequency (i.e., low e,)
noise increases. For reactions such as ete~ and pp the
background noise is limited to a few particles per unit
pseudorapidity. In this case Eg is in fact an excellent es-
timator for Er 2 10 GeV. However, in Au+Au collisions
[2,6] at RHIC energies, for example, the nonperturbative
background is at least 400 times greater than in pp, and
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estimates with event simulators [2] indicate that the sig-
nal to noise ratio in (2) is on the order of unity for jets
in the energy range 10 S E < 40 GeV.

Figure 1 shows a typical Au+Au event with two 30-
GeV jets at RHIC as predicted with the event genera-
tor HIJING [2]. Plotted are the transverse energies e, of

all produced hadrons with e, > E. with E; = 0.2 and -

2 GeV/c, respectively, as a function of their azimuthal
angle ¢,. It is obvious from Fig. 1 that most of the
background particles have low e, and can be filtered out
by setting E. ~ 2 — 3 GeV/c. Therefore, instead of
adding the energies of all particles within a jet angu-
lar cone as in Eq. (2) it will pay to filter out first the
low-frequency noise. This is only possible with a detec-
tor such as a time-projection chamber (TPC) since the
momenta of all charged particles can be determined si-
multaneously. Detection of neutral particles requires in
addition a highly segmented neutral energy calorimeter
in conjunction with a TPC.

While the simple filter above discards most of the back-
ground particles, it of course also discards valid jet frag-
ments with e, < E.. This leads to an inevitable loss of
information that would bias downward the estimator (2).
The aim of this work is to develop a more robust estima-
tor of the jet energy that can adaptively compensate for
the loss of information caused by filtering out the low-
frequency noise. Our starting point, borrowed from the
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FIG. 1. HIJING Monte Carlo [2] simulation of a /s =

200A GeV central *7Au+'°"Au collision producing two jets
with E = 30 GeV together with the associated soft and multi-
mini-jet background. The pulse heights represent the trans-
verse energy E of individual particles as a function of their
azimuthal angle ¢ for |n| < 1.5. In the upper graph, all par-
ticles produced with E > 0.2 GeV are plotted. In the lower
graph, only those that survive a high-pass filter with £ > 2
GeV are plotted.
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field of neurocomputation, is that FFN provide a power-
ful adaptive tool for approximating arbitrary R* — R™
mappings [7].

An N-layer FFN maps an input data array X =
(z1,...,Ty) into an output array S = (s1,...,8m) via

S=F(Wy - F(WoF(W1X))--") . (3)

The rectangular n; X n;y; connection matrices W, to-
gether with response function(s) F(Y)
= (fi(y1),---, fx(yx)) define the mapping. The f; are
typically parametrized in terms of a sigmoid-type func-
tions, but linear functions are sometimes sufficient for
the task. The number of layers (connectivity matrices)
and the block structure and dimensionality of the con-
nectivity matrices define the architecture of the network.
FEN are especially useful because they can be “taught,”
in principle, an arbitrarily complex mapping through a
variety of simple learning algorithms [8]. They are of
practical interest because they can, in principle, also be
implemented in hardware via fast, parallel, analog very-
large-scale-integration technology [9]. This last feature
of FFN is of special interest for high-energy and nuclear
physics due to the growing need for faster triggering and
rapid information processing to cope with the ever in-
creasing rate and volume of data produced by modern
detectors. The adaptivity and speed of FFN have been
emphasized recently in several other applications to high-
energy-physics problems [10-13].

II. NEURAL NETWORK JET FILTERS

We concentrate in this paper on a specific aspect of this
problem, namely whether the information loss due to fil-
tering the data can be efficiently compensated for using
a FFN. In principle, the input to the network is the array
of transverse energies within an angular cone R. The mo-
menta and energies of produced particles are presumed
to be determined by a first stage tracking algorithm (see
a recent discussion of adaptive tracking methods in Ref.
[14]). In our numerical simulations, however, we restrict
the study to a distribution of isolated quark jets as our
aim here is to illustrate the power of the method rather
than deal with all the complications of nuclear reactions
at once.

A. Network architecture

We consider a network architecture as illustrated in
Fig. 2. The first layer of our FFN is just a simple thresh-
old high-pass filter which only passes the transverse en-
ergies of particles with e, > E,;. The output of this first
layer is then sorted with transverse energies in decreas-
ing order. This is the only nonlinear operation that we
consider here. The sort is performed to allow the subse-
quent layer to utilize possible correlations among leading
hadrons. We denote the sorted vector of filtered trans-
verse energies by

k| k ko ok
e = {ek,eb, ... efleb =1, ef >ef>--->E.} .

(4)
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Structure of the Feed Forward Network
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We refer to ef as the transverse energy of the jth-rank
hadron in an event where k£ hadrons pass the filter. The
first-rank hadron is the one with the largest energy in
the jet cone, etc. The zeroth component ef =1 GeV is
added for later notational convenience. Note that R and
E, are parameters of the network.

In the next layer, we introduce a linear “neuron”
for every k with a connection weight vector w* =
{w§,w¥,...,wk}. Neuron k only responds if k¥ hadrons
pass the filter threshold and its output is used as the
estimator of the jet energy,

k
E’=w’°-e’°=2wfeic . (5)
=0

Note that since ef = 1 GeV, the component w§ acts as
an external bias which has the physical interpretation as
the missing energy in GeV caused by the high-pass filter.

The problem then is to determine the weights given
the threshold E. and jet cone R such that E* becomes an
unbiased estimator of the jet energy. In principle, E. and
R should also be considered as variational parameters to
optimize the performance of the net. However, these are
fixed in our analysis for numerical simplicity.

B. Network parameters
Suppose that Py (e, E) is the probability that a jet of
known energy E fragments into k& hadrons above thresh-
old with e*. The performance of neuron k for estimating
the jet energy can be measured via an error function:

Xi(E)=1 /(E — wk . e¥)2Py (e, E)dek - - - def
=1 (Z wkCE(BE)wk — 2B wk AR (E)
iJ i

+E2Pk(E)) ) (6)

where A¥(E) = (eF) is the mean energy of the ith rank
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FIG. 2. Illustration of the neural filter
network. The first layer filters out parti-
cles with energy e, < E.. The second layer

output sorts remaining transverse energies into vec-

tor e* = {ek,e¥,... ek} with e = 1 and
ef > e'2° > ... > FE.. The third layer esti-

mates the jet energy via E' = w* . e*

weights wf trained on sample data.

using

hadron produced from a jet of energy E when only the
leading k particles pass the filter, CK(E) = (eFek) is
the covariance of the ith- and jth-rank hadrons, and
P(E) = [Pi(e*, E)de}---def is the probability that
only the first k-rank hadrons survive the high-pass fil-
ter cut. Note that P¥, Ai‘, and C{‘j are determined by

the jet-fragmentation function Py (e*, E), which depends
implicitly also on E, and R.

Averaging over the primordial PQCD spectrum I(E)
of jets, a global error function for neuron k can be con-
structed as

(3) = / X2(E)I(E)dE
=3 Do wkThwk 2> wkFF+QF) . (7)
,J [3

In contrast to P*, A¥, and C§, the Q*, FF, and Tk are
dependent on the form of the QCD jet spectrum I(E).
We determine the neural weights w* so as to minimize
the global error function. Since (x?) is a positive definite
quadratic form, it has one global minimum, and therefore
the simplest learning dynamics can be used to train the
network. That minimum can be easily found via the

gradient-descent equations

dwz,'c 3<X%> k., k k
B Buwk "—"—ZTijwj +F o, (8)

J

or simply solving the linear equation TW = F numeri-
cally.

To test the network, the jet spectrum I(F) was calcu-
lated via lowest-order PQCD as in [1]. The integration
over the fragmentation function was performed via Monte
Carlo assuming all jets were back-to-back 19 = 0 quark-
antiquark pairs for simplicity. The two-jet-fragmentation
scheme of LUNDJETSETS6.3 [15] was used to generate the
hadronic fragments. The transverse-energy threshold
was fixed to be E, = 2 GeV. We emphasize that this
is not meant to be a realistic simulation of nuclear colli-
sions but only a simple model to illustrate the adaptive
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performance of FFN in this type of application. Table I
lists the weights which were found to minimize the net-
work global error on the above training data.

The most striking result is that the weights w? fori>1
turned out to be close to 1. This is largely due to sum
rule for fragmentation Za e, = E, which requires that
the weights approach unity as the threshold E, — 0.
For E. small compared to the typical jet energies, one
can show that the deviation of the optimal weights from
unity is in fact controlled by the correlation between the
energies of the leading and filtered hadrons via

N (ebek) — (eb)(ek) E,
w?“’l*O( (@7 — (e )””O<f> !

©)
where ef = Y e¥0(E. — €¥) is the energy lost by the
filter. Since by definition ef = 1 GeV, the optimal val-
ues of w§ is close to the average missing energy in GeV
units. There is k¥ dependence of the missing energy as the
optimal weights of the leading rank 1 and 2 hadrons is
generally slightly less than unit and more missing energy
must be made up by w§.

C. Network response

The response of the network of course has a finite
range. Let R(E’, E) be the probability that the response
is B’ to an input jet of energy E. This response distri-
bution is

R(E',E) = Z/a(wk -e* — E"YPi(e*, E)de¥ - - - def .
k

(10)

The response using the optimal weights discussed above
is shown for E = 10,20, 30,40 GeV jets in Fig. 3. The
bias of the network

(11)

measures the average shift of the estimated jet energy.
The dispersion

5(B) = / (E' — B)R(E', E)dE'

o(E) = (/(E’ — E)’R(E/, E)dE’) 2 (12)

measures the rms fluctuation around the average re-

TABLE 1.
text, are listed.

DAWEI W. DONG AND MIKLOS GYULASSY 47

108 T - -
QCD jets ——
filter response oo

4

107
106 ......

105 L

10%

Counts

10°

\
1

. ! 1
'
e
“t

10?
10

1

E (GeV)

FIG. 3. The response distributions for initial jet energy
equal to 10,20,30,40 are shown separately. The total re-
sponse probability, i.e., the percentage of events that frag-
ment with at least two hadrons with e, > E. = 2.0 GeV, is
0.53, 0.94, 0.97, and 0.98 with mean 9.48, 18.7, 28.9, and 38.9
GeV and rms width 1.43, 2.27, 2.26, and 2.23 GeV for the
four cases, respectively. The curves are normalized relative
to the input PQCD spectrum I(t) (solid). Also shown is the
integrated output response spectrum O(t) (dotted). In the
simulation, the bin size is 1 GeV.

sponse. To see that the optimal weights lead to an unbi-
ased estimator of the total energy note that

§(E)=>_ /(w’c -e* — E)Pi(e*, E)de" - - dek
k

k
=2 (Z wf AF(B) - EPk(E)) (13)
k \i=0
The global bias is thus
k
(6) = /5(E)1(E)dE =Y (Z wiFF — Q’“)
k  \i=0
(14)
For the optimal weights
dwk
d—t"z—Zngwang:o . (15)
J

Because ef = 1, T(fj = Ff , F¥ = QF, the above equation
implies that - w*FF — QF = 0. Consequently, (§) =

Optimal weights found by minimizing the network global error, as discussed in the

5.82

k Wo wy w2 w3 Wy ws We wr wg

2 2.23 1.03 1.02

3 2.67 1.01 1.02 0.96

4 3.00 1.01 1.00 1.00 0.93

5 3.35 0.99 1.01 0.99 0.99 0.90

6 3.74 0.98 0.99 0.97 0.97 0.96 0.92

7 4.43 0.96 0.97 0.92 0.94 1.08 0.92 0.85

8 0.94 0.85 1.04 0.98 0.87 1.03 0.82 0.64
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0, i.e., the optimal network weights guarantee the bias
averaged over the spectrum vanishes.

The optimal weights also minimize the dispersion.
Substituting (10) into (12),

o (E)=) / (wk . ef — E)2Pr(e*, E)det - - - def
k

=> 2} (B) . (16)
The global square dispersion is then given by

(0?) = / AE)(B)E = 3203 - (17)
k

Since the optimal weights minimize all (x2), the global
{(0?) is also minimized.

The output spectrum O(E’) of the network is a con-
volution of the response distribution R(E’, E) with the
primordial input spectrum I(E):

O(E') = / R(E',E)I(E)dE . (18)

Binning the input and output spectra into a histogram,
we can express this convolution in matrix form as

Oi = RyI; . (19)

Because the response distribution of the linear neuron
has a finite dispersion, each point in the input spectrum
(corresponding to jets of a given energy) will spread to
nearby bins according to the response distribution of the
neuron at the point. This leads to an inevitable defor-
mation of the input spectrum as seen in Fig. 3. Note
that the network is designed to respond only to jets with
at least two leading hadrons passing through the filter.
Therefore, the integrated output spectrum is also less
than the integrated input one. In the next section we
discuss a method to correct this systematic distortion of
the primordial spectrum.

III. DECONVOLUTION

Having established the parameters of the network, we
turn next to the method of deconvolution for jet dis-
tribution analysis. The physics goal is to recover the
primordial distribution from the distorted measured one.
Naively, we would try to invert (19) by I = R~1O. How-
ever, in general R is not symmetric and has zero eigenvec-
tors not orthogonal to the others. Therefore, its inverse
is ill defined.

A. The objective function

The best we can do is to determine I such as to max-
imize the likelihood that O is observed given knowledge
of the response R. Assuming high statistics such that
the central limit theorem applies in each bin, the best fit
iszobtained by minimizing an objective function such as
X
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X2 =130k - N)2/o? (20)
k

where Ny = > . Ri;I; is the expected number of counts
in bin k and o = v/N is the expected variance of the
number of counts in that bin. In the limit Ny > 1,
required for the applicability of (20), a good estimate for
the variance is obtained by approximating cr,% ~ Ok > 1.
Minimizing (20) with respect to I, we find that I must
satisfy the following linear equation: TI = F', where

T = ZRijki/U}% = ZRijki/Ok (21)
k k

and

Fi=> RpOi/oi~ Y Ry . (22)
k k

The error made in the above approximation on the right-
hand side decreases as O 1/2

B. Singular-value decomposition

What has been gained relative to (19) is that T is sym-
metric and thus has a complete set of real orthonormal
eigenvectors. Unfortunately, there is no guarantee that
all eigenvalues are nonvanishing, and in many practical
cases in fact detT = 0. Hence T~ ! still does not exist
in general. However, we can define its pseudoinverse [16]
T-1 such that T-1T = 1 — Py, where P, is the projector
onto the subspace of zero eigenmodes. In that case we
can “solve” for I as

I=T7'F+1, , (23)

where Iy = Pyl is an arbitrary vector in the zero sub-
space. Since Iy does not alter the value of x2, however,
we can discard it for convenience and approximate the
optimal input spectrum by

ik ik

Note that if detT # 0, (24) does reduce to I = R~10
as expected. Numerically, ff’[.l is obtained by the stan-
dard singular-value decomposition method [16] in which
the inverse of the matrix of near-zero eigenvalues is set
to zero. We emphasize that the above deconvolution pro-
cedure is not an on-line process but is to be performed
once at the end of the experiment.

Propagation of the error during deconvolution is in-

evitable. Given (24) the deconvolution error is found to
be

2
2

k
2
k 1

This error increases as the jet energy increases because
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the number of counts decreases rapidly with energy. At
some point this error exceeds the systematic error before
the deconvolution. Beyond that point deconvolution is
pointless and we have to live with the small distortions
due to the network response.

Shown in Fig. 4 is the optimal neural filtered jet dis-
tribution (dotted) compared the input QCD distribution
(solid line). We see that below 20 GeV, the neural filter
significantly underestimates the QCD distribution, but
that the distortions become small above that energy. The
normalization of the QCD counts is adjusted to that ex-
pected at RHIC after a year of running. The filter noise
is assumed to be the square root of the number of counts.
The square symbols indicate the result of deconvoluting
the filter response. We see that for E S 20 GeV, the
deconvolution method accurately corrects for the distor-
tions caused by the neural filter. Above that energy the
deconvolution method begins to fail as error propagation
overcomes the accuracy of the method.

C. Constrained optimization method

The deconvolution points in Fig. 4 obtained using the
singular-value decomposition method obviously have a
spurious large oscillating component. This is because the
optimization procedure has overfit the noise introduced
into the response curve by the finite number of counts in
each bin. To overcome this problem, we note that there
is extra a priori knowledge about the jet spectrum which
has not been used yet: the QCD spectrum always has
a positive curvature (second derivative). To utilize that
information we add a penalty term (cost function) to the
x? of the form

C = aZexp(—Ii_l +2I; — Ii+1) . (26)

Instead of Eq. (20), we then minimize

108 — T T .
w b QCD jets ——
filter response oo
108 . filter noise ~ -=*--- 1
NN deconvolution a
10° b i~ . _
N i pT deconvolution error  --
2 10t T difference
2 .
S T 1
102 ............................ 4
10 LT
1
5 10 15 20 25 30 35 40 45
E (GeV)
FIG. 4. Comparison of the input QCD jet distribution

(solid) to the convoluted network response distribution (dot-
ted) and the deconvoluted network response (boxes) based on
the singular-value method. Note that the errors (long-dashed)
propagating through the deconvolution begin to exceed the
systematic bias of the network response (long dotted) beyond
E 2 20 GeV.

108 — : . -
w0 b QCD jets ——
filter response -
108 i filter noise  ------ 1
5 \ R deconvolution a
10 R deconvolution error - - -
2 10t s difference
LI
T S
w b T
10
1 . . . . . L . "
5 10 15 20 25 30 35 40 45
E (GeV)
FIG. 5. Comparison of the input QCD jet distribution

(solid) to the convoluted network response distribution (dot-
ted) and the final deconvolution (boxes) using the constrained
optimization method. The constraint punishes negative cur-
vature. The statistical errors of the deconvolution are 1-7 %,
and the deconvoluted network response is within 10% of the
desired input.

Eer =X +C . (27)

The C term acts to penalize negative curvature and thus
smooths out the deconvolution. The error of the resulting
solution I can then be estimated by the covariance matrix
H~1, where H is the Hessian

o O%Een
Y 01,01,

(28)

The error bar of a solution I is estimated by the covari-
ance matrix A™! evaluated at I. Note that unlike the T
matrix, matrix A is invertible here.

Minimization of &, can be conveniently done by gra-
dient descent. The corresponding constrained deconvolu-
tion result is shown in Fig. 5. The statistical errors of the
deconvolution are 1-7%, and the deconvoluted network
response is within 10% of the desired input. We see that
the constraint term accurately corrects for the distortions
caused by the neural filter. It removes most of the oscil-
lations in the singular-value decomposition method and
reduces the error bars in energy range above 20 GeV. It
works remarkably well in the whole range from 4 to 40
GeV. To reduce the computation time, one can start with
the values calculated by the singular value decomposition
method and then perform gradient descent to minimize
gerr-

IV. DISCUSSION

The results above demonstrate that the neural filter
deconvolution algorithm proposed here can uncover the
primordial jet spectrum in spite of the the loss of informa-
tion in the transverse energy < 2 GeV region. However,
it is also important to investigate the robustness of the
algorithm to changes in the jet distribution and fragmen-
tation function. Recall that jet analysis was originally
proposed as a probe of the parton energy loss in dense
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matter in nuclear collisions and that new physics would
manifest itself in a characteristic change of the apparent
jet distribution [1, 2].

A. Robustness to softened jet spectrum

The optimal weights in Table I are based on the cal-
culated PQCD spectrum I(E) of jets though minimizing
Eq. (6). Since the main interest in performing jet studies
with nuclear collision is to look for deformations which
may arise due to energy loss of the jet parton passing
through dense matter [1, 2], we tested the response of
the network to changing I(E) — I(E + 4). This sim-
ulates a 4-GeV energy shift of jet partons independent
of their initial energy [2]. The result is shown in Fig.
6. It is clear that the constrained deconvolution method
reproduces the input spectrum well in both cases.

The reason for this is that the fragmentation func-
tion and the transverse momentum cut off are the same,
and the network parameters are most sensitive to those
two aspects. The network remains near optimal and the
response function R(E’,E) is unaffected by this type
of modification. We conclude that any shift of the jet
spectrum uncovered by the constrained deconvolution
method reflects the underlying physics and is not a spu-
rious distortion caused by filtering out the low-frequency
noise. In the example studied, the method correctly un-
covered the assumed 4-GeV energy loss.

We note that in real applications, the network should
be trained on line with actual pp jet data where the
PQCD jet distribution is known to be correct from a
large body of prior experiments [3,4]. With those data,
the learning dynamics may train the network to a dif-
ferent point in weight space to compensate for the ac-
tual efficiencies of the detector the influence of noise and
physical differences from the LUNDJETSET6.3 model. The
cutoff parameters E. and R should also be determined
so as to optimize the overall jet finding efficiency.

108 T T v
I(E) —
T IE+4) -
"’0,
-
10° e
Q._.>‘
.
10 F “ea 7
“«..A

2 s
£ 10" f e, )
g )
) e

108t R 1

Ve ..
102 | s
10 f 1
1 1 1 1 1 1 L
5 10 15 20 25 30 35 40
E (GeV)
FIG. 6. The robustness of the constrained deconvolution

method is tested on two input spectra. The solid curve is the
original PQCD spectrum I(E). The dashed curve is an energy
shifted spectrum I(E + 4). The same fragmentation function
and weights are used in both cases. The output deconvolution
points reproduce the input well in both cases.
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B. Modified fragmentation

A more challenging problem for the network is to ex-
pose it to jets that fragment differently than those it was
trained on. In Sec. IVA we assumed that energy loss
in the medium only softens the hard parton spectrum
before fragmentation but the jet fragmentation function
for leading hadrons remains unaffected by the nuclear
medium. We now test the effect of modifying the frag-
mentation function itself.

We explore next the possibility that the fragmentation
function has modified medium effects so as to produce
more hadrons along the jet axis with low energy and less
at high energy, as shown in Fig. 7. To simulate “data”
of this type we changed the fragmentation parameter a
of the fragmentation probability distribution,

f(z) = 2711 — z)2e~tmr/z | (29)

in the LUNDJETSETS.3 [15] code. In Fig. 7, the hadron
energy distributions for a 10-GeV quark jet are shown for
the default value a = 0.5 and two others values a = 1.0
and 2.5.

The ratio of the constrained deconvoluted network re-
sponse to the unmodified input PQCD spectrum I(E) is
shown in Fig. 8. Note that the network parameters were
optimized for default a = 0.5 fragmentation scheme. This
ratio is seen to decrease systematically with increasing a.
As the relative number of low-energy particles increases
the deconvoluted response is systematically lower than
the actual primordial input distribution. This systematic
shift reflects well the change in the underlying fragmen-
tation physics and is again not an artifact of the filter.
Therefore, deviations from the initial PQCD spectrum
after deconvolution can be used to search for jet physics
in AA that differs from that in pp.

In Fig. 9 we show that this difference can also be an-
alyzed in terms of an average energy shift parameter,

original a = 0.5 ——

100 i modified @ = 1.0 = |
RS modified a = 2.5
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FIG. 7. The hadron fragmentation distributions from a
10-GeV quark jet are shown for different fragmentation func-
tions in which the parameter a of LUNDJETSETS.3 is changed
from 0.5 to 1.0 and 2.5. For larger a, the fragmentation be-
comes softer in the sense that more hadrons are produced at
lower energy and the high-energy hadrons are suppressed.
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similar to that discussed in Sec. IV A. Denoting the de-
convoluted spectrum by I(E), we can define an effective
energy shift, AE(FE) via

I(E+ AE(E) =I(E) . (30)

The resulting AE for the a = 1.0 and 2.5 modified frag-
mentation schemes is shown in Fig. 9. Note that a con-
stant AE ~ —0.5 and —2.0 GeV characterizes well the
difference in the physics in these cases over most of the
interesting energy range. We conclude that AE deduced
in this way provides a convenient and physically sugges-
tive measure of the nuclear dependence of jet physics in

AA.

C. Comparison with other filters

While the bias w§ reveals a systematic variation with
k, the approximate constancy of all the weights wk,; =~
1 indicates that the global minimum in weight space is
close to the point defining a simple linear high-pass filter

(LHPF) characterized by w&, = 1 for k > 1. This is
a nontrivial result of the optimization procedure. We
therefore also compare results obtained with the simplest
LHPF network where only the biases w§ are determined
so as to minimize the global error. As a further test
of the proximity of the global minimum to the LHPF
point, we also performed a hybrid network analysis in
which only the energies of the leading two particles are
utilized to estimate the jet energy. In the hybrid net we
set wk 5 = 0, and determine the other weights as before.

The performance of all three networks is compared in
Fig. 10. Shown are the dispersion and bias of network
as a function of the initial jet transverse energy E of an
isolated jet in units of the filter cutoff momentum E, = 2
GeV/c. We see that while the optimal neural filter has
the overall best performance, the linear high-pass filter is
only slightly worse. The hybrid two-particle filter leads
to considerably worse performance. We emphasize again
that the convergence of the neural network to a point in
weight space close to that defining a simple LHPF is not
trivial and illustrates the power of the method. We could
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= 10 |+ * { ] AE gquating the output and input spec-
v ’ % tra: I(F + AE) = I(E). The results show
S z that medium modified fragmentation func-
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-2.0 } x

25 | } {

_3‘0 1 1 1 1 1 1

energy loss over a wide range of jet energies.
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FIG. 10. The response curves for different filter weight
configurations. The standard deviation and the bias of the
network are plotted vs the input jet energy E in units of the
cutoff energy E. = 2 GeV. Three different network configura-
tions are considered: the optimal neural filter, the linear high-
pass filter with wlFZl = 1, and a hybrid leading two-particle

filter with wfza =0.

continue to guess different hybrid weight configurations.
However, the learning algorithm explores the error sur-
face and converges to the true global minimum in weight
space without the necessity of guesses. For this particu-
lar problem with this particular fragmentation function
it just so happens that the minimum is not far from the
high-pass filter point. Training the network with real pp
data or more sophisticated event generators may lead to
a different conclusion.

V. SUMMARY

We have proposed a neural network filtering and de-

convolution method for jet analysis to compensate for
the loss of information in reactions where the background
overwhelms the signal at low transverse energies. The nu-
merical tests discussed here suggest that the method may
be especially useful for application to nuclear collisions at
RHIC and LHC energies, where a large number of mini-
jets lead to an enormous background below E, ~ 2 — 3
GeV. We showed that if jet physics is unmodified by the
nuclear environment, then the filtering and deconvolution
method recovers accurately the expected PQCD spec-
trum. We tested the method also in two different phys-
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ical scenarios where the spectrum of leading hadrons is
modified by the nuclear medium. In one scenario, the
jet is assumed to lose an average energy AE before frag-
menting as usual into the leading hadrons. We found
that in this case the constrained deconvolution method
accurately reproduces the shifted jet spectrum. In the
second case, medium effects were assumed to lead a soft-
ening of the jet-fragmentation function. That scenario
also led to a systematic shift from the input PQCD spec-
trum. We then showed, however, that the shift could
also be well described by an average energy loss. Our
main conclusion is that in spite of the large background
expected in AA collisions which renders conventional jet-
analysis techniques useless, adaptive neurocomputation
techniques can overcome effectively the loss of informa-
tion at low transverse energies and help in the search for
new physics.

In closing, we point out several open problems that
need further study in this connection. The present nu-
merical study was limited for simplicity to the study of
an isolated spectrum of quark jets with a threshold cut-
off E, = 2 GeV to illustrate the method. We have not
addressed the problem of differentiating between quark
and gluon fragmentation [10] nor the rejection efficiency
of coincidence multiple-jet events that happen by acci-
dent to fragment into the same angular cone R. The first
problem can be addressed by training on data derived
from more realistic event generators such as HIJING [2].
The second problem involves devising more efficient algo-
rithms for calculating the relative rates of rare jets versus
coincidental multiple jets. In principle, HIJING contains
such backgrounds as well, but it is numerically impracti-
cal to study this at this time. A new method for trigger-
ing on coincident events would have to be implemented.
Finally, the effects of finite resolution and detector biases
should be investigated. The recovery of loss or distortion
of information due to the measurement process is a sep-
arate problem requiring coupling a full event generator
such as HIJING with a GEANT analysis [6] of detector re-
sponse and possibly coupled with an adaptive tracking
algorithm such as ET [14].
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